Definable Smoothing of Lipschitz Continuous Functions
نویسنده
چکیده
Let M be an o-minimal structure over the real closed field R. We prove the definable smoothing of definable Lipschitz continuous functions. In the case of Lipschitz functions of one variable we are even able to preserve the Lipschitz constant.
منابع مشابه
Definable Smoothing of Continuous Functions
Let R be an o-minimal expansion of a real closed field. Given definable continuous functions f : U → R and : U → (0,+∞), where U is an open subset of Rn, we construct a definable Cm-function g : U → R with |g(x)− f(x)| < (x) for all x ∈ U . Moreover, we show that if f is uniformly continuous, then g can also chosen to be uniformly continuous.
متن کاملPOINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS
The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let be a non-emp...
متن کاملApproximation of o-minimal maps satisfying a Lipschitz condition
Consider an o-minimal expansion of the real field. We show that definable Lipschitz continuous maps can be definably fine approximated by definable continuously differentiable Lipschitz maps whose Lipschitz constant is close to that of the original map.
متن کاملMonotonicity Preserving Approximation of Multivariate Scattered Data ∗
This paper describes a new method of monotone interpolation and smoothing of multivariate scattered data. It is based on the assumption that the function to be approximated is Lipschitz continuous. The method provides the optimal approximation in the worst case scenario and tight error bounds. Smoothing of noisy data subject to monotonicity constraints is converted into a quadratic programming ...
متن کاملA variable smoothing algorithm for solving convex optimization problems
In this article we propose a method for solving unconstrained optimization problems with convex and Lipschitz continuous objective functions. By making use of the Moreau envelopes of the functions occurring in the objective, we smooth the latter to a convex and differentiable function with Lipschitz continuous gradient by using both variable and constant smoothing parameters. The resulting prob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006